If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+18x-64=0
a = 0.5; b = 18; c = -64;
Δ = b2-4ac
Δ = 182-4·0.5·(-64)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{113}}{2*0.5}=\frac{-18-2\sqrt{113}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{113}}{2*0.5}=\frac{-18+2\sqrt{113}}{1} $
| 14y+3/2=2/5 | | 9^5x=49 | | X^2-4x+14=4x-2 | | 7a+4=5a | | 1+-2x+2x=1 | | -1=6=x/2 | | -11-56=-14x+46 | | 4(5x-18)=88 | | (3x-1)^1÷3=2 | | 4x-4=5-4 | | 6f-9-4=-6f+12 | | (x+2)÷(x-2)=7÷3 | | X3-32x-136=0 | | 21x+8=50 | | 21x-8=50 | | 0,7+4y=1.7 | | 5n+6=2n+24 | | 8b=-8 | | 6(x-2)+5(2x-5)=11 | | .x+1=2x+2 | | 3(y-2)=4(3-y) | | 211=121-y | | D/20+1=d/24+1.25 | | D/20+1=d/24+111/4 | | x.x=0 | | x•x=0 | | 8m=$16.40 | | -7b-1=-5b+-15 | | 5x*4x=500 | | .5x+8=2x+17 | | 0.05n+0.10(2n-1)=1.90 | | -(5/3x)+6/2x+1=0 |